
Application of the Fung Equation to the Constant 
Strain Rate Behavior of Plasticized Polyvinyl Chloride 

PAUL H. DEHOFF,* College of Engineering, Department of Mechanical 
Engineering, Bucknell University, Lewisburg, Pennsylvania 17837 

Synopsis 

A quasilinear viscoelastic equation originally proposed by Fung to characterize the uniaxial vis- 
coelastic behavior of rabbit mesentary is used in this study to characterize the visctwlastic behavior 
0 1  plasticized polyvinyl chloride for strains up to 24%. An experimentally determined relaxation 
I'unction is used to predict the constant strain rate behavior of plasticized polyvinyl chloride. The 
predictive ability of the Fung equation is also compared with the well-known BKZ and Lianis theories. 
11 was found that the Fung equation agrees quite closely with the BKZ and Lianis theories hut that 
all three theories showed only moderate agreement with experiment. 

INTRODUCTION 

Interest in the nonlinear viscoelastic characterization of materials was probably 
at  its peak during the decade of the sixties, brought on by the development a t  
that time of the solid propellant industry and, subsequently, the expanding use 
of plastics and polymeric materials as engineering materials. I t  was early rec- 
ognized that many of these materials exhibit nonlinear behavior, even at  rela- 
tively small strains and that the well-developed theory of linear viscoelasticity 
was insufficient as a characterizing tool. 

Because of familiarity with the linear viscoelastic theory, it is not surprising 
that some early investigators attempted to generalize the linear theory to account 
for moderately nonlinear effects. One such theory was a generalization of the 
hereditary integral proposed by Leaderman.' This equation was successful in 
describing the uniaxial creep and recovery behavior of plasticized PVC but was 
not sufficiently general to describe all nonlinear viscoelastic materials. 

Green and coworkers2p:3 presented a more general constitutive theory for 
nonlinear materials with memory in which the stress depends on the deformation 
gradient history. Later Coleman and Noll" proposed a theory which was said 
to be applicable to simple viscoelastic materials with fading memory under slow 
motions. Lianis," recognizing the inherent experimental difficulty in attempting 
to evaluate the numerous material functions associated with a general theory, 
proposed a simplification of the Coleman and No11 theory. Based on existing 
experimental evidence, Lianis suggested that a modification of the Coleman and 
No11 equation containing only four relaxation functions and three elastic coef- 
ficients might be adequate to describe the behavior of some polymers under large 
strain conditions. This theory was later successfully used in a series of experi- 
ments by Lianis and coworkers6-10 for both uniaxial and biaxial stress states. 

A t  about the same time Bernstein, Kearsley, and Zapas' proposed a single 
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integral theory to characterize the nonlinear viscoelastic behavior of materials 
which could be considered as elastic fluids. This theory, which is commonly 
known as the BKZ theory, has received experimental support by the studies of 
Zapas and Craft,12 Zapas,I3 Goldberg et al.,14 and more recently by Sadd and 
Morris.15 An essentially empirical integral equation suggested by Fung16 as a 
means of characterizing the viscoelastic behavior of rabbit mesentary has been 
successfully used by a number of  investigator^'^-'^ to characterize the uniaxial 
viscoelastic behavior of biological soft tissues. The Fung equation has not found 
application for the viscoelastic characterization of polymers, although Schapery2" 
has stated that the Fung equation is included as a special case in his own ther- 
modynamic formulation of a nonlinear viscoelastic constitutive equation. 

I t  is the purpose of the present paper to discuss the special material behavior 
which must exist if the Fung equation is to have direct application to the uniaxial 
nonlinear viscoelastic behavior of polymeric materials. Special forms of the 
Lianis and BKZ theories are presented and discussed as a basis for comparison 
with the Fung theory and with each other. 

FUNG EQUATION 

The Fung equation was essentially an empirical development and can be 
written as 

where ae(t) is the tensile stress instantaneously generated in the tissue when a 
step extension X is imposed on the specimen. G ( t )  is a normalized stress relax- 
ation function found from 

G ( t )  = a(t)/a('(O+); G(0) = 1 (2) 
Since both a(t) and ae(O+) are, in general, functions of the deformation, G ( t )  
will be independent of the deformation only if the relaxation stress is a separable 
function of time and deformation, that is, if G ( t )  is in the form 

a(t) = rC/(t)F(X) (3) 

This situation exists for linear viscoelastic response but is generally not true 
when nonlinear strains are present. 'One case in which the strain and time de- 
pendence are separable for moderately nonlinear viscoelastic behavior is the 
relaxation behavior of plasticized polyvinyl chloride reported by DeHoff and 
Chakrabarti21 for strains up to about 20%. In particular they found that the 
relaxation stress could be written in the form 

(4) 

where k is a constant depending on the material and W t )  is a relaxation function. 
If it is assumed that the instantaneous stress is in the same form as eq. (4), then 
the normalized stress relaxation function is given by 

a ( t )  = (A'- 1/X) (1  + k/X) @(t )  

G ( t )  = @ ( t ) / + ( O + )  (5) 

Utilizing eq. (4), the Fung equation can now be cast in the form 
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Here both 9(0) and G ( t )  can be found from a series of stress relaxation tests, 
and therefore, eq. (6) can be used to find the stress response for any arbitrary 
uniaxial strain history. In this study we are interested in comparing the pre- 
dictive ability of eq. (6) for a constant strain rate history against two other ap- 
proximate nonlinear viscoelastic equations and against experimental evi- 
dence. 

LIANIS THEORY 

It  has been shown by Lianis5 that the nonlinear uniaxial viscoelastic behavior 
of some polymers can be represented by a four-function equation in the form 

d X2(7) 
d 7 (  X2 

4o(t - 7 )  - -- - a(t) = urn + 2 

d 
d7 M7) 

+ (A2 - 1/X) 1; &(t - T) - ( X2(7) + L, d7 (7) 

where urn is the long-time (equilibrium) stress and the & ( t )  are time-dependent 
relaxation functions such that lim t - 4(t)  - 0. X(7) is the extension ratio 
history and X = X ( t )  is the extension ratio at the present time t. Equation (7) 
represents a reduction to the one-dimensional case of a more general equa- 
tion. 

For a uniaxial stress relaxation test for which X(7) = 1, 7 < 0, and h(7)  = h 
(const) 7 > 0, it can be shown that eq. (7) reduces to 

+ [24,,(t) + 242(t) + 24:dt)I (1/Q 
+ [Wdt) - 43(t)] [A2 - 11 (8) 

Recently DeHoff and Chakrabarti21 used eqs. (7) and (8) to interpret nonlinear 
uniaxial creep and relaxation data for plasticized polyvinyl chloride (PVC) for 
strains up to about 20%. They found that plasticized PVC exhibited relaxation 
behavior which resulted in straight line isochrones when plotted on a Mooney- 
Rivlin diagram [u(t ) / (X2 - 1/A) versus 1/X]. Figure 1 shows typical results from 
that study. I t  can be seen from eq. (8) that linear isochrones require that 

(9) 242(t) - 4dt) = 0 

&)/(A2 - 1/M = (7- + [241(t) - 24dt)I + (240(t) + 43@)1 (1/M 

so that eq. (8) further reduces to 

(10) 
In Ref. (21) it was assumed that plasticized PVC exhibits fluidlike behavior, 
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Fig. 1.  Typical Mooney-Rivlin relaxation isochrones for plasticized PVC'(data from Ref'. 21 ). 0, 
1 inin; 0, 15 min; A,  60 min. 

so that urn was taken equal to zero. We make the additional assumption that 
both &(t )  and QL3(t)  are identically zero, so that eq. (10) takes the simpler 
form 

Returning again to Figure 1, we can see that t.he isochrones for the plasticized 
PVC all pass through a common point on the abscissa. For such behavior, sl(t) 

and $o( t )  are not independent functions but are related in the following way: 

and 
@ d t )  = kQ,(t) (124 

u ( t )  
(h2- l / h )  

= 291(t) (1 + k / h )  

where k is a constant found equal to -1.65 for plasticized PVC by DeHoff and 
Chakrabarti.?l 

The uniaxial constitutive equation can now be written as a single-function 
theory in the form 

This equation will be referred to as the Lianis equation and will be used to 
interpret constant strain rate data for plasticized PVC. 

BKZ THEORY 

A theory which has found extensive application in characterizing the nonlinear 
behavior of polymeric solutions, melts, and solids was proposed by Bernstein, 
Kearsley, and Zapas" as applicable to incompressible elastic fluids. The uniaxial 
BKZ equation can be written in the form 
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a ( t )  = S-1 (x - w, [h(X/X(7), t - T)] d7 
X2(7) 

where h is a material function derivable from an elastic potential. For a uniaxial 
single step relaxation history in which 

the stress is given by 

Here H(h, t )  can be written as 

such that 

Thus the simple stress relaxation experiment provides important information 

Comparing eq. (16) with eq. (12b) leads us to conclude that the form of H(h,t) 

(19) 

from which special forms of the function h(X,t) can be deduced. 

for plasticized PVC is given by 

H(X,t) = 241(t) (1 + k / X )  

For a motion which starts at  t = 0 following a rest history, eq. (14) takes the 
special form 

Substitution of eq. (19) into (20) leads to 

Equation (21) can be used for any uniaxial strain history for a material which 
exhibits relaxation isochrones of the type displayed in Figure 1. 

EXPERIMENTAL PROCEDURE 

The material used in the experimental phase of this study was a commercial 
plasticized PVC purchased from Reed Plastics, Inc. as a shelf item. This is the 
same material used in a previous study by DeHoff and Chakrabarti. The sample 
configuration was simply a strip of 89 mm inches gage length with rectangular 
cross section of 12.9 X 0.305 mm. 

The uniaxial constant strain rate tests were conducted at 23°C in an ambient 
air atmosphere. The displacement history was applied by means of a hydraulic 
loading cylinder which is an integral part of an Instron Dynamic Testing System 
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(closed-loop electrohydraulic). Loads were obtained with a strain-gauge-type 
commercial load cell and were plotted directly on an X -  Y recorder along with 
actuator displacement. The strains were computed by dividing the actuator 
displacement by the original length. Two strain rates (4%/min and 0.4%/min) 
were run for a strain range up to approximately 24%. 

DISCUSSION OF RESULTS 

Based on the earlier study by DeHoff and Chakrabarti, it was found to be 
possible to represent the experimentally determined relaxation function for 
plasticized PVC as a linear function of log time in the form 

& ( t )  = -1.417 ln(t + 1) + 14.31 (MPa) (22) 

Using this form for the relaxation function, the uniaxial constitutive equation 
for each theory is repeated here as a matter of convenience. 

t 
Fung: a ( t )  = 2 SO [14.31 - 1.417 ln(t - T + l)] ( ~ A ( T )  

1 +- 
A 2 ( 7 )  

t 
Lianis: a ( t )  = 2 [14.31 - 1.417 ln(t - T + l)] (,A(,) 

+- +- 
A’(7) 2kA(T)+Ei A’ A Z ( 7 )  

BKZ: a ( t )  = 2 SOt [14.31 - 1.417 ln(t - T + l)] 
1 kA +-+- 

A’(7) d7 (23) 

X ’ ( T )  dT (24) 

A’(T)  d7 (25) 

In a constant strain rate test the extension ratio history is given by 

A ( T )  = 1 + RT (264 

X ( t )  = A = 1 + Rt (26b) 

where R is the rate (in min-I), T is the past time, and t the present time. On 
substitution of eqs. (26a) and (26b), eqs. (23)-(25) can be integrated to give the 
stress prediction for the constant strain rate history by each of the three theories. 
In the present case, however, an analytical solution was not sought and eqs. 
(23)-(25) were integrated numerically. 

Figure 2 shows the analytical predictions by each theory for plasticized PVC 
a t  a strain rate of 0.4%/min, as well as a comparison with experimental data at  
the same strain rate. It can be observed that the three theories predict similar 
results for strains up to ~ W O  and then deviate slightly a t  the higher strains. In 
each case reasonable agreement with the data exists for strains up to about 6%, 
after which each theory predicts higher stress levels than were experimentally 
observed. In Figure 3 the same comparison is shown for a strain rate of 4%/min. 
In this case the predicted results are somewhat closer to the experimental data, 
indicating that the theories tend to demonstrate less strain rate sensitivity for 
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Fig. 2 .  Cmstant strain rate test at a strain rate of 0.4%/min. A, BKZ; X, Lianis; 0 ,  Fung; 0, 
data. 

A 

STRAIN; % 
Fig. 3. Constant strain rate test at a strain rate of4?&/rnin. A,  BKZ; 0 ,  Fung; 0, data. 

plasticized PVC than that found experimentally. It should be noted that the 
Lianis theory is not shown, since it predicts nearly the same results as the Fung 
theory at  this strain rate. 

CONCLUSIONS 

It  has been shown that the Fung theory, which has proved popular for char- 
acterizing the uniaxial material behavior of soft biological tissues, can also be 
applied to some polymers as well. It predicts constant strain rate behavior which 
agrees with the much-tested BKZ and Lianis theories for the very special be- 
havior exhibited by plasticized PVC up to about 25% strain levels. 

While the Fung theory is fairly easy to apply, there are a t  least two major 
limitations which make its general application for characterizing the material 
response of polymers somewhat unlikely. In its present form it is strictly a 
one-dimensional theory, and therefore its application would be restricted to 
one-dimensional polymeric systems such as fibers. Second, the original con- 
struction of the theory requires that the relaxation function G ( t )  be a function 
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of time only. Since G(t  ) is taken as the ratio of the relaxation stress at  any time 
divided by the initial elastic response, G ( t )  will be independent of the strain level 
only for linear response or for the type of special response exhibited by the 
plasticized PVC. Very few polymers demonstrate this special behavior over any 
significant strain range, and therefore application of the Fung equation in its 
original form is quite limited. 

However, it is possible to generalize the meaning of G ( t )  to include dependence 
on the strain level by simply defining the relaxation function as the ratio of the 
relaxation stress divided by the initial stress response. For example, 

G(t,X) = a(t,X)/u(O,A) (27) 
This approach has been taken by Jenkins and LittleIg to characterize the 

nonlinear viscoelastic response of bovine ligamentum samples up to 60% and by 
DeHoff and BinghamZZ for the nonlinear viscoelastic response of the canine 
anterior cruciate ligament for strains up to 7%. In both studies the results of 
uniaxial relaxation tests were used with some success to predict behavior under 
constant strain rate conditions. It is expected that a similar approach could be 
used for polymers which do not exhibit the special behavior depicted in Figure 
1, but this generalization was not part of the present study. 

Recently, Peng et al.'" proposed a generalization of the Fung equation to ac- 
count for the in uiuo biaxial relaxation behavior of human skin. In this study 
it was found that the effects of strain and time were factorizable, and therefore 
the reduced relaxation function was a function of time only. We are not aware 
at  the present time of any study which generalizes the Fung equation to account 
for multidimensionality and nonseparable strain-time dependence. 

Finally it should be observed that the predictive ability of the three theories 
studied here was less than outstanding for the constant strain rate test at  
0.4%/min (Fig. 2). However, it should also be noted that the form taken for the 
Lianis theory was quite restricted. A number of material functions were arbi- 
trarily dropped, and it is quite possible that better agreement with experimental 
results would be possible by including more functions. Inclusion of these ad- 
ditional functions would, of course, have required additional testing situations 
to evaluate them. Since the objective of this study was to compare the Fung 
equation with very simplified versions of the BKZ and Lianis theories, and since 
these theories have been thoroughly studied by others, it was not deemed nec- 
essary to attempt to improve the predictive ability of these theories. It is suf- 
ficient to note that the Fung equation can be used for polymers with some success 
when very special uniaxial relaxation response is exhibited by the polymeric 
material. 
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